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Abstract

Background: The telomerase enzyme is a viable target for anti-cancer therapy given the innate differences in
telomerase activity between tumour cells and normal somatic cells. However, the time lag between telomerase
inhibition and telomeres becoming critically short to trigger cell death, allows cancer cells to acquire drug resistance.
Inhibition of DNA repair pathways along with telomerase could be an alternative strategy to enhance anti-tumour
effects and circumvent the possibility of drug resistance. Poly (ADP-Ribose) Polymerase-1 (PARP-1), an important DNA
damage sensor and a DNA repair factor, has important roles in maintaining telomeres and chromosomal stability. In

in cancer therapeutics.

this study, the effects of combined inhibition of PARP-1 and telomerase in mouse embryonic fibroblasts (MEFs)
following sodium arsenite exposure (a carcinogen and potent DNA damaging agent), were evaluated.

Results: Inhibition of PARP in telomerase deficient MEFs induced an increase in arsenite-induced DNA damage as
compared to control cells. Combined inhibition also resulted in enhanced genomic instability, demonstrated by
elevated micronuclei induction and chromosomal aberrations with decreased cell survival. In addition, telomerase
inhibition in PARP-1 deficient MEFs led to greater telomere shortening and increased genomic instability.

Conclusions: Our study demonstrated that the co-inhibition of PARP-1 and telomerase in MEFs rendered cells
more susceptible to DNA damaging agents. Hence, these results offer support for the use of combined inhibition
of PARP-1 and telomerase as a strategy to minimise the problems associated with long-term telomerase inhibition

Background
Telomeres are specialised dynamic structures at the
ends of linear eukaryotic chromosomes consisting of non-
coding DNA repeats (TTAGGG), and associated proteins
[1,2]. These terminal DNA-protein complexes function as
protective caps preventing chromosomal end-to-end
fusions and the recognition of chromosomal ends as
damaged DNA [3]. Telomeres shorten with each cell divi-
sion, eventually triggering senescence [4,5]. In contrast,
majority of tumour cells overcome telomere-mediated
senescence via the activation of telomerase enzyme [6].
Telomerase contains two core components, an RNA
subunit (hTERC and mTERC in human and mouse
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respectively), which provides the template for replenish-
ment of telomeres [7] and a catalytic protein subunit, telo-
merase reverse transcriptase (WTERT or mTERT) that
adds telomeric repeats to existing telomeres [8]. Deletion
of mTERC in mice resulted in the shortening of telomeres
leading to increased genomic instability and reduction in
growth rate [9-11]. In addition, these studies have also
demonstrated that no phenotypic differences occur in the
first generation mice lacking mTERC component. The
abrogation of telomerase results in the reduction in cell
proliferation only after telomeres are critically short.
Numerous DNA repair proteins along with the telo-
merase complex have been shown to have pivotal roles
in the maintenance of telomere homoeostasis without
any effect on telomerase activity. Dysfunctional telo-
meres, resulting from the loss of telomeric repeats or
the loss of function of telomere-associated proteins,
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trigger DNA damage responses similar to that observed
for DNA breaks [12-14].

Poly (ADP-ribose) polymerase-1 (PARP-1), a member
of the PARP family, is a DNA damage sensor [15,16]
that allows for DNA repair upon binding to DNA strand
breaks. This is effected by the post-translation mediation
of downstream proteins in the base excision repair path-
way [17-19]. Poly (ADP-ribose) polymerases (PARPs)
mediates addition of ribose moiety using NAD" as sub-
strate in post translational modification of histones and
other nuclear proteins that contributes to the survival of
cells following DNA damage[20,21]. PARP-1 also plays a
role in telomere maintenance [22,23]. PARP-1"" mouse
embryonic fibroblasts (MEFs) exhibited heightened
genomic instability and telomere dysfunction following
exposure to DNA damaging agents [24,25]. Recently, it
was shown that in the absence of telomere dysfunction,
PARP-1 appears sporadically at telomeres but following
DNA damage, PARP-1 localised to the damaged telo-
meres through its interaction with the telomere repeat
binding factor 2, TRF2 [26].

Apart from the complex protein network involved in
telomere homeostasis, telomerase enzyme plays a domi-
nant role in telomere maintenance in tumour cells. Tel-
omerase inhibition has become an attractive target for
cancer therapeutics due to specific targeting of tumour
cells [27-29]. However, a potential drawback of telomer-
ase inhibition as a chemotherapeutic agent is that telo-
meres must become critically short before cytotoxic
effects are observed in cancer cells. This lag phase may
allow cancer cells to adapt using mechanisms such as
alternative lengthening of telomeres, to counteract telo-
mere shortening triggered by the absence of telomerase.

We recently reported that cells with dysfunctional tel-
omeres are susceptible to DNA damage induced by
sodium arsenite [30]. Although this study highlights the
protective role of telomeres in the event of DNA
damage, it also draws attention to the requirement of
critically short telomeres for the onset of cytotoxicity.
Interestingly, microarray analysis showed differential
expression of PARP-1 in wild type and GI-mTERC "
MEFs [30]. Thus, we wanted to test if the inhibition of
PARP-1 in mTERC”~ MEFs could sensitise cells to
DNA damaging agents and whether this combinatorial
approach can be utilised to sensitise cells to chemother-
apeutic agents.

Results

PARP inhibition in MEFs lacking telomerase RNA
component (mTERC™") induced elevated arsenite

induced DNA damage

In our recent study, we observed an up-regulation of
PARP-1 expression following arsenite treatment, which
was higher in MEFs deficient in TERC component as
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compared to wild type [30]. We sought to evaluate
whether the inhibition of PARP sensitises mTERC”"
MEFs to sodium arsenite-induced DNA-damage. Wild
type and mTERC”~ MEFs, pre-incubated with 3-amino-
benzoamide (3-AB; A competitive inhibitor of PARP)
[31,32], were treated with different doses of sodium
arsenite (As>"). Single cell gel electrophoresis assay
under alkaline conditions, which allows for the analysis
of all types of DNA damage, including double strand
breaks, single strand breaks, and alkali labile sites, was
carried out to estimate the extent of DNA damage
induced by arsenite treatment.

Arsenite treatment resulted in elevated DNA damage
in mTERC™", 3-AB treated mTERC™" and wild type
MEFs compared to untreated wild type MEFs (Fig. 1).
DNA damage following 24 hours of As®* treatment was
greater in mTERC”~ compared to wild type MEFs. Of
all the treatments, the greatest extent of DNA damage
was observed in 3-AB exposed mTERC”’~ MEFs. At
3.0 pg/ml of As**, mTERC”~ MEFs exhibited signifi-
cantly higher levels of DNA damage compared to wild
type cells. This difference was enhanced following PARP
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Figure 1 DNA damage as measured by the comet assay in
different cell types. Comet assay was used to assess the extent of
DNA damage in terms of tail moment (fraction of DNA in the tail).
mMTERC™" and mTERC”™ MEFs were treated with arsenite [Untreated
(Black columns), 1.5 pug/ml (11.5 uM) (dotted columns) and 3.0 pg/ml
(23 uM) (white columns)] in the presence or absence of 3-AB. PARP
inhibition in MTERC” MEFs led to greater increase in DNA damage
as compared to wild type MEFs. Data is represented as mean + SE
from three independent experiments. *p < 0.05 when treated cells
are compared to respective untreated controls. *p < 0.05 when
3-AB treated cells are compared to respective 3-AB untreated cells
in the presence or absence of arsenite. “p < 0.05 when 3-AB treated
mMTERC” cells are compared to 3-AB treated mTERCY* in the

absence or presence of arsenite treatment.
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inhibition (Fig. 1), suggesting that the inhibition of
PARP in cells with dysfunctional telomeres renders
higher sensitivity to As®>*-induced DNA damage.

Inhibition of PARP in mTERC”™ MEFs resulted in elevated
arsenite-induced chromosomal instability

We have demonstrated in previous studies that
arsenite exposure resulted in genomic instability in
PARP-1"" and mTERC”" MEFs [25,30]. We hypothe-
sised that the inhibition of PARP-1 in telomerase-
deficient cells may lead to enhanced arsenite-induced
chromosomal instability. To examine this possibility,
micronuclei (MN) analysis, a reliable indicator of chro-
mosomal damage and genomic instability, was used.
Consistent with previous reports, following 24 hours of
arsenite treatment, there was a dose dependent
increase in the percentage of MN in wild type and
mTERC”’~ MEFs, with mTERC”~ MEFs showing
greater incidences of MN formation compared to wild
type cells (Fig. 2C). Following the chemical inhibition
of PARP in these MEFs, there was an increase in MN
formation in both the cell lines compared to untreated
control cells. mTERC”~ MEFs treated with 3-AB dis-
played significantly increased percentage of MN com-
pared to 3-AB treated wild type MEFs at each dose of
arsenite (Fig. 2C).

The presence of MN is a result of the exclusion of
chromosomes or chromosomal fragments from the
daughter nuclei. Consequently, we undertook fluores-
cence in situ hybridisation (FISH) analysis using telo-
meric PNA probes to analyse structural chromosome
aberrations, particularly end to end fusions and chromo-
somal breaks. Chromosome preparations were carried
out only for the 1.5 pg/ml dose of arsenite as it was not
possible to obtain metaphases at the higher dose of
arsenite. 3-AB treated mTERC™~ MEFs displayed great-
est incidences of chromosomal fusions and chromoso-
mal breaks following As>* treatment (Fig. 2D and 2E).
Moreover, the highest percentages of aberrant cells were
also observed in PARP inhibited mTERC”'~ MEFs fol-
lowing arsenite treatment (56%).

PARP-1 inhibition sensitised telomerase deficient mouse
cells to arsenite induced cell death

To investigate the effect of PARP-1 inhibition in
mTERC”™ MEFs on cellular proliferation, we examined
cell viability using crystal violet assay. Following PARP
inhibition with 3-AB, the reduction in cell viability was
minimal in wild type and mTERC”~ MEFs. However,
upon addition of 1.5 pg/ml arsenite, 19% decrease in
cell survival was observed in 3-AB treated wild type
MEFs while 3-AB treated mTERC ~~ MEFs displayed
an even greater decrease (32%) in cell viability (Fig. 3).
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This indicated that the combined inhibition of PARP-1
and telomerase increased the sensitivity of MEFs to
arsenite-induced genomic instability and reduced
viability.

Combined inhibition of telomerase and PARP reduced
telomere length and increased genomic instability in
mouse cells

Previous reports have shown that decreased level of
PARP-1 activity either with pharmacological inhibitor or
PARP-1 deletion in mammalian cells resulted in shorter
telomere lengths compared to normal cells without any
changes in telomerase activity [22,23]. The effect of
PARP inhibition and arsenite treatment on telomere
lengths was investigated by quantitative FISH (Q-FISH)
in mTERC”~ MEFs. 3-AB exposure for 48 hours did not
induce significant changes in telomere length. However,
extensive telomere shortening was observed following
exposure to arsenite in wild type MEFs (Fig. 4). Interest-
ingly, the frequency of chromosomes with shorter telo-
mere length following arsenite treatment was highest in
PARP inhibited MEFs. PARP inhibited mTERC”~ MEFs
also displayed increased chromosomal fusions with
higher degree of telomere shortening compared to
untreated controls.

Current anti-cancer approaches targeting telomerase
are varied, ranging from RNA interference of the RNA
or TERT component to identification of novel com-
pounds targeting telomerase activity. We employed
MST-312, a synthetic telomerase inhibitor [33] to
impair telomere homeostasis in both wild type and
PARP-17~ MEFs. MEFs were treated with 0.5 uM and
1.0 puM of MST-312 for 72 hours and telomerase activ-
ity was evaluated using TRAP assay. As shown in
Fig 5A, telomerase activity was kept at a significantly
reduced level in both wild type and PARP-1"~ MEFs
with 72 hours of MST-312 treatment. We then investi-
gated the effect of MST-312 treatment on telomere
lengths in MEFs by Q-FISH following 15 days of
1.0 uM MST-312 treatment. The basal telomere length
in PARP-1"" MEFs was lower compared to the wild
type MEFs, consistent with previous reports [22,23].
More importantly, MEFs exposed to dual inhibition
of telomerase and PARP-1 activity exhibited shortest
telomere length (Fig. 5B). The incidence of micronuclei
formation following arsenite exposure, also doubled in
MEFs with both PARP-1 and telomerase activity
inhibited as compared to MEFs with only PARP or
telomerase inhibited (Fig. 5C). These findings thus
demonstrate that the inhibition of telomerase activity
with MST-312 in PARP-1"" MEFs led to accelerated
telomere shortening, rendering these cells more sus-
ceptible to arsenite-induced genomic instability.
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Figure 2 Effects of PARP inhibition in mTERC** and mTERC”~ MEFs on chromosome stability. (A) Acridine orange stained binucleated cell
with no MN, indicating no apparent damage. (B) Acridine orange stained binucleated cell with MN from PARP inhibited mTERC”” MEFs following
24 hour arsenite treatment. (C) Histogram of micronuclei formation, in mTERCY* MEFs and mTERC”™ MEFs treated with sodium arsenite
[Untreated (Black columns), 1.5 ug/ml (11.5 uM) (dotted columns) and 3.0 ug/ml (23 uM) (white columns)] in the presence or absence of 3-AB.
mMTERC” MEFs displayed a greater extent of MN formation as compared to wild type MEFs at each concentration of arsenite and inhibition of
PARP-1 in both MEFs further increased this difference. Frequency of chromosomal aberration such as fusion (D) and breaks (E) per cell as
analysed by PNA FISH in mMTERCY* MEFs (black columns) and in mTERC”™ MEFs (white columns) following treatment with 3-AB and/or sodium
arsenite [1.5 pg/ml (115 pM)). Majority of chromosomal breaks and fusions were observed in PARP inhibited mTERC”" MEFs. Representative
images of (F) fusion (arrow) and (G) breaks (arrow) from PARP inhibited mTERC” MEFs following 24 hour treatment with arsenite. Data is
represented as mean + SE from three independent experiments. *p < 0.05 when treated cells are compared to respective untreated controls.

o < 0.05 when 3-AB treated cells are compared to respective 3-AB untreated cells in the presence or absence of arsenite. *p < 0.05 when

3-AB treated mTERC”” cells are compared to 3-AB treated mTERC™" in the absence or presence of arsenite treatment.
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Figure 3 Inhibition of PARP in mTERC™" led to greatest decrease in cell survival. Cell viability was analysed by crystal violet assay in mTERC™*
and mTERC”” following 24 hours of arsenite treatment, with and without 3-AB. Following exposure to arsenite, 3-AB treated mTERC”” cells showed
significant decrease in cell survival as compared to 3-AB treated mTERC™* cells (*p < 0.05). Data is represented as mean + SE from three independent
experiments.
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Figure 4 Telomere length measurements by Q-FISH in different cell types used. Frequency distributions of telomere fluorescence in
mMTERC** and mTERC” MEFs from Q-FISH studies on metaphases prepared from surviving cells following treatment with PARP inhibitor and
arsenite. Average telomere fluorescence intensity was significantly lower ("p < 0.05) in untreated mTERC”” as compared to untreated mTERC"*
cells. Arsenite treatment led to significant decrease (*p < 0.05) in average mean telomere florescence intensity in both mTERC™* cells and
mMTERC” cell as compared to respective untreated controls. Changes in distribution of frequency of cells with shorter telomere fluorescence
intensity observed following treatment with 3-AB and arsenite in both mTERC** and mTERC” cells.
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Figure 5 Telomerase inhibition in PARP-1 deficient MEFs reduced telomere length and increased genomic instability. (A) Measurement
of telomerase activity in PARP-1"* and PARP-17" MEFs with untreated controls (black columns), 0.5 UM (striped columns) and 1.0 M (white
columns) of MST-312 for 72 hours. (B) Telomere length frequency distribution in (i) PARP-1** MEFs (ii) PARP-17" MEFs (iii) PARP-1*/* MEFs with
MST-312 and (iv) PARP-17" MEFs with MST-312. Telomerase inhibition in PARP-1 deficient MEFs resulted in greatest decrease in telomere length.
() Histogram of micronuclei formation in PARP-1"* MEFs (black columns) and PARP-17" MEFs (white columns) with sodium arsenite and
MST-312 treatment. MN frequency was significantly increased in telomerase inhibited PARP-1 deficient MEFs following exposure to 1.5 pg/ul

of sodium arsenite. Error bars indicate standard error between three independent experiments. *p < 0.05 compared with respective

untreated controls. “p < 0.05 compared between MST-312 treated cells with or without arsenite treatment.
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Differential gene expression patterns in PARP-17" and
mTERC”" MEFs compared to normal MEFs

It is well established that the absence of a gene can
potentially trigger transcriptional regulation of many
compensatory genes. To determine the gene expression
profile of PARP-17" and mTERC - MEFs compared to
that of wild type MEFs, microarray technology was
employed. The effect of PARP-1 and mTERC on genes
involved in cell proliferation, DNA repair and telomere
maintenance was thus examined. As shown in Fig 6, dif-
ferential gene expression profiles were observed in these
MEFs when compared to wild type MEFs. Majority of
the genes were either up-regulated or down-regulated in
both PARP-1"" and mTERC '~ as compared to wild
type MEFs (Table 1).

Discussion

Several lines of evidence indicate that the activation of
telomerase and the subsequent stabilisation of the telo-
meres are vital for the growth for majority of tumour

cells. While most tumour cells express telomerase,
somatic cells generally do not express this enzyme [6].
Telomerase thus serves as a potential target for cancer
therapy. The main drawback is the duration required for
telomere length to reach a critical level before triggering
senescence and/or apoptosis, which allow tumour cells
time to develop resistance to anti-telomerase agents.
Mice lacking telomerase RNA component survived but
exhibited telomere shortening and increased chromo-
some instability [9]. Telomerase deficient mouse cells
were also viable in culture and found to employ telo-
merase independent mechanisms to maintain their telo-
meres [11,34]. We have demonstrated in earlier studies
that MEFs with dysfunctional telomeres exhibited sensi-
tivity towards arsenite induced genomic instability treat-
ment [30]. Similar observations were made in the
present study whereby mTERC”’~ MEFs sustained
shorter basal telomere length and exhibited significantly
higher arsenite induced genomic instability as com-
pared to mTERC*'* MEFs. However to counteract the
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limitations of using telomerase inhibition alone, we
explored the effects of a combinatorial approach of tar-
geting telomerase activity and PARP-1 using PARP-17-
and mTERC”" MEFs with arsenite exposure.
Pharmacological inhibition of PARP in telomerase
null MEFs increased the sensitivity to arsenite-induced
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cytotoxicity and genotoxicity. The inhibition of Tan-
kyrase 1, a member of PARP family, in human cancer
cells, has been shown to enhance telomere shortening
and hasten cell death [35]. As observed in this study,
the inhibition of PARP-1 activity in telomerase defi-
cient MEFs led to reduced cell survival, which were
accompanied by elevated genomic instability. Concur-
rently, we treated PARP-17~ MEFs with a synthetic tel-
omerase inhibitor MST-312. Interestingly, the telomere
length analysis by Q-FISH indicated that the cells defi-
cient in PARP-1 activity with pharmacological reduc-
tion in telomerase activity displayed the shortest
average telomere length. Telomerase inhibition in
PARP-1"" MEFs enhanced arsenite-induced genomic
instability as well. Mammalian telomeric ends are pro-
tected by proteins such as TRF2 which stabilise the
loop structure of the telomeres [36,37]. A recent report
has shown that the localisation of PARP-1 to damaged
telomeric ends is partly attributed to its interaction
with the TRF2 protein [26]. Arsenite-induced damage
at the chromosome ends may trigger the recruitment
of PARP-1 to the telomeres to mediate repair. Thus,
the increased sensitivity of telomerase deficient MEFs
with PARP-1 inhibition to arsenite damage may be due
to the lack of repair at both non-telomeric DNA and
telomeric ends. The present study thus demonstrates
the potential of combined inhibition of PARP-1 and
telomerase for cancer therapy.

Gene expression studies revealed differential gene
expression patterns in PARP-1"" and mTERC™”/~ com-
pared to wild type MEFs. Genes that are differentially
regulated in both the cell types include genes involved
in the biological processes such as cell growth and/or
maintenance, DNA damage response, repair and telo-
mere maintenance. More importantly, about 42 genes
which are important for DNA damage signalling and
repair and cell death were shown to be altered in their
expression patterns. The gene expression level of
BRCA2 was reduced in PARP-1"" and mTERC”" com-
pared to wild type MEFs suggesting potential interplay
of these genetic factors. It was recently found that the
targeting of PARP-1 in cells defective in homologous
recombination due to BRCA1 or BRCA2 dysfunction
results in chromosomal instability, cell cycle arrest and
subsequent apoptosis [38,39]. Some of the PARP inhibi-
tions are also currently used in combination with che-
motherapy in clinical trials [40]. Hence, understanding
the changes in gene expression profiles may provide
potential insights into selecting appropriate candidates
for further combinatorial studies.

Conclusions
Integrating the findings from both models used in this
study, it is possible to infer that telomerase inhibition
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Table 1 Functional categorisation of differentially
expressed genes in wild type, mTERC * and PARP-17"
MEFs following arsenite treatment.

Gene Name GeneBank ID  mTERC  PARP-1"
Cell death

Aifm2 AK017403 6.50 450
Bcl21 BB667581 347 222
Siva AF033112 337 124
Sphk AF068749 322 335
Pik3r1 M60651 124 -245
Birc1f Al451585 -1.58 -2.15
IAP1 NM_007464 -2.55 -1.72
FLG M33760 -3.13 -1.65
Casp9 BB815299 -3.78 1.68
Faim-L NM_011810 -4.24 -1.38
Fam NM_007983 -8.56 -1.33
Birc6 BM228823 -9.20 241
Dad1 BI966630 -9.29 -1.67
Cycs NM_007808 -947 -2.83
Stk17b Al661948 -9.94 1.01
II-6 NM_031168 -1248 -8.72
Bip NM_022310 -20.04 -3.15
DNA damage response

Brca2 NM_009765 -1.64 -2.09
Xrn2 NM_011917 -1.82 -1.01
H2afx NM_010436 -2.04 -2.03
Ddb2 Al131584 -2.07 1.16
Rad51ap1 BC003738 -231 -2.59
Ercc5 BM198879 -232 -133
Gadd45a NM_007836 -2.57 -1.67
MIh1 NM_026810 -2.82 -146
Msh6é U42190 -2.94 -1.56
Chek2 NM_016681 -3.09 -1.72
1110013J05Rik NM_025392 -3.17 =217
Lig4 AW545311 -4.01 -1.95
Sod1 BC002066 -6.15 -1.81
Mapk14 BC012235 -7.63 -2.63
Telomere homeostasis

Smg6 BC006644 3.18 6.26
Adprt1 BB767586 249 -4.06
Terf2 BI439979 2.01 -2.23
Hspalb M12573 1.28 143
BIm NM_007550 1.02 -2.77
DNA-PK D87521 -1.98 -3.18

Expression profile of selected genes, which were differentially expressed to a
fold change of 2.0 or more in one of the treatments are given. Data indicate
the fold increase (positive values) or decrease (negative values) in treated
samples compared to corresponding normal controls.
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and the consequent telomere shortening sensitises MEFs
to DNA damaging agents. Our study demonstrated that
the combined inhibition of PARP-1 and telomerase in
MEFs rendered cells more susceptible to DNA dama-
ging agents. Hence, these results offer support for the
use of co-inhibition of PARP-1 and telomerase as a
strategy to overcome the limitations associated with tel-
omerase inhibition alone for cancer therapy.

Materials and methods

Cell culture and drug treatment

Wild type, PARP-1"" and mTERC™”~ MEFs (Kindly
provided by Dr. Zhao-Qi Wang, Germany and Dr. Han-
Woong Lee, South Korea respectively) were cultured
in Dulbecco’s Modified Eagles Medium (DMEM) sup-
plemented with 10% foetal bovine serum (Hyclone,
USA) and 100 U/ml of penicillin/streptomycin (Gibco,
USA). To evaluate the response of PARP-1 and telomer-
ase deficiency to arsenite-induced damage, cells in expo-
nential growth phase (at about 70% confluence) were
exposed to two different doses of sodium m-arsenite
[(As®*; Sigma, USA) 1.5 pg/ml (11.5 uM) and 3.0 pg/ml
(23 uM)] for 24 hours. PARP-1"" MEFs were pre-treated
with 1 pM telomerase inhibitor, MST-312 for 48 hours
and mTERC”~ MEFs were treated with 3 mM 3-Amino-
benzamide (3-AB; Sigma, USA) for 24 hours prior to
exposure to As>*. All cells were maintained in a humidi-
fied 5% CO, incubator at 37°C.

Assay for cell viability

Following drug treatment, cells were washed with phos-
phate buffered saline (PBS). Crystal violet solution
(0.75% crystal violet in 50% ethanol: distilled water with
1.75% formaldehyde and 0.25% NaCl), which stains
DNA by binding to nuclear proteins, was added to the
culture wells and incubated for 20 minutes at room
temperature. Following successive PBS washes to
remove excess crystal violet solution, wells were air
dried and 1% sodium dodecyl sulphate in PBS was
added to lyse the cells and solubilise the dye. Cell viabi-
lity was measured at 590 nm absorbance and expressed
as the percentage of controls.

Alkaline single cell gel electrophoresis (Comet) assay

Cells were treated with As®>* for 24 hours with the doses
mentioned earlier. The treated cells were harvested by
trypsinisation and washed in ice-cold PBS. The cells
were then suspended in Hank’s balanced salt solution
(Sigma, USA) and mixed with 0.7% low melting point
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agarose (at 37°C). The cells were then applied on Comet
slides (Trevigen, USA), and subjected to lysis (2.5 M
NaCl, 0.1 M pH 8 EDTA, 10 mM Tris base, 1% Triton
X) at 4°C for 1 hour. The slides were loaded into a gel
electrophoresis tank in 0.3 M NaOH, pH 13 with
EDTA, allowed to denature for 40 minutes, and electro-
phoresis was done as per vendor’s suggestions. After
electrophoresis, slides were briefly rinsed in neutraliza-
tion buffer (500 mmol/L Tris-HCl, pH 7.5), air-dried,
and stained with SYBR green dye (Trevigen, USA). One
hundred randomly selected nuclei were examined per
sample using Comet Imager Software (Metasystems,
Germany). Extent of DNA damage was expressed as a
measure of comet tail moments, which corresponds to
the fraction of DNA in the comet tail.

Cytokinesis-blocked micronucleus analysis (CBMN)
Following arsenite treatment, cells were incubated with
4 pg/ml cytochalasin B (Sigma, USA) for 22 hours and
processed as described earlier [41,42]. One thousand
binucleated cells for each sample were scored for the
presence of MN under a Zeiss Axioplan 2 imaging
fluorescence microscope (Carl Zeiss, Germany) with
appropriate triple band filter.

Telomeric Repeat Amplification Protocol (TRAP) Assay
Telomerase activity was measured by the commercially
available TRAPeze® XL Telomerase Detection Kit (Che-
micon International) according to the manufacturer’s
instructions.

Peptide nucleic acid-fluorescence in situ hybridisation
(PNA-FISH)

Following arsenite treatment, cells were released from
the treatment and allowed to grow for 24 hours in fresh
media. Cells were arrested at metaphase with 0.1 pg/ml
colcemid (Gibco, USA). The cells were harvested and
subjected to hypotonic treatment of 0.03 M sodium
citrate buffer at 37°C for 20 minutes followed by fixation
in Carnoy’s fixative. Fluorescence in situ hybridisation
(FISH) was performed using telomere specific PNA
probe labelled with Cy3 and the cells were counter-
stained with 4’, 6-Diamidino-2-phenylindole (DAPI,
Vectashield) [11]. Fifty metaphases per sample were cap-
tured using the Zeiss Axioplan 2 imaging fluorescence
microscope and analysed using the in situ imaging soft-
ware (Metasystems, Germany) for chromosomal aberra-
tion analysis. Ten metaphase spreads per sample were
analysed for telomere length measurement using the
ISIS imaging software (Metasystems, Germany).

Gene expression analysis
Gene expression profiles were generated for Wild type,
PARP-1"" and mTERC”~ MEFs by microarray gene chip
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assay. Total RNA was extracted (RNeasy kit, Qiagen,
Germany), and double-stranded cDNA was synthesized
from 5 pg of total RNA using Superscript system (Invi-
trogen, USA) primed with T7-(dT)-24 primer. For biotin-
labelled cRNA synthesis, in vitro transcription reaction
was done in the presence of T7 RNA polymerase and
biotinylated ribonucleotides (Enzo Diagnostics, USA).
The cRNA product was purified (RNeasy kit, Qiagen,
Germany), fragmented, and hybridized to Affymetrix
GeneChip Mouse Genome 430 2.0 in a Gene chip hybri-
dization oven 640 (Affymetrix Inc., USA) as per the Gene
Chip Expression Analysis manual (Affymetrix Inc., USA).
After 16 hours of hybridisation, the gene chips were
washed and stained using the Affymetrix Fluidic station
and scanned by Gene Array Scanner (Affymetrix Inc.,
USA). Image data were normalized and statistically ana-
lysed using Gene Spring 7.2 (Silicon Genetics, USA).
Microarray experiments were repeated twice in order to
confirm the differential gene expression. More than 300
genes with P < 0.05 (one-way ANOVA) were differen-
tially expressed and they were annotated according to
GO-biological process. Subsequent data analysis involved
Agglomerative average-linkage hierarchical clustering for
finding different patterns and levels of gene expression.

Statistical analysis

Statistical significance in the data sets was assessed
using Student’s t-test using Microsoft Excel 2003
(Microsoft Corp., USA) and two-way ANOVA, using
Graphpad Prism. The difference was considered to be
statistically significant when the p values are < 0.05.
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